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Mixing under laminar flow conditions is key to a wide variety of industrial fluid
systems of size extending from micrometres to metres. Profound insight into three-
dimensional laminar mixing mechanisms is essential for better understanding of the
behaviour of such systems and is in fact imperative for further advancement of
(in particular, microscopic) mixing technology. This insight remains limited to date,
however. The present study concentrates on a fundamental transport phenomenon
relevant to laminar mixing: the formation and interaction of coherent structures
in the web of three-dimensional paths of passive tracers due to fluid inertia. Such
coherent structures geometrically determine the transport properties of the flow and
thus their formation and topological structure are essential to three-dimensional
mixing phenomena. The formation of coherent structures, its universal character
and its impact upon three-dimensional transport properties is demonstrated by
way of experimentally realizable time-periodic model flows. Key result is that fluid
inertia induces partial disintegration of coherent structures of the non-inertial limit
into chaotic regions and merger of surviving parts into intricate three-dimensional
structures. This response to inertial perturbations, though exhibiting great diversity,
follows a universal scenario and is therefore believed to reflect an essentially three-
dimensional route to chaos. Furthermore, a first outlook towards experimental
validation and investigation of the observed dynamics is made.

Key words: chaotic advection, low-Reynolds-numbers flows, nonlinear dynamical
systems

1. Introduction
Transport under laminar flow conditions is key to a wide variety of industrial

systems of size extending from microns to metres. Examples range from the traditional
(and still very relevant) mixing of viscous fluids (Ottino 1989; Aref 2002; Wiggins &
Ottino 2004) via compact processing equipment (Jaluria 2003; Sunden & Shah 2007)
to rapidly emerging fields as micro-processing equipment (Bertsch et al. 2001; Ottino &
Wiggins 2004; Stone, Stroock & Ajdari 2004; Nguyen & Wu 2005), lab-on-a-chip
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applications in molecular analysis (Meagher et al. 2008; Weigl, Labarre & Gerlach
2008) and biotechnology (Beebe, Mensing & Walker 2002; Tourovskaia, Figueroa-
Masot & Folch 2005). Purposes are equally diverse and range from classical mixing
enhancement via thermal homogenization to advanced functionalities as creation of
specific gradient fields and targeted delivery of mass in designated flow regions in
micro-reactors and lab-on-a-chip systems.

Profound insight into laminar transport, especially in complex three-dimensional
unsteady systems, is imperative for further advancement in, particularly, emerging
fields as process intensification and micro-fluidics. These areas, even more so than
conventional macroscopic applications, rely heavily on accurate knowledge and
manipulation of scalar transport (Stone et al. 2004; Squires & Quake 2005). However,
such insight remains limited to date. This motivates the present study, which seeks
to contribute to the present understanding of three-dimensional laminar transport
by theoretical and numerical analyses of fundamental transport mechanisms in
experimentally realizable three-dimensional model flows.

Unsteady laminar transport is investigated in terms of the three-dimensional
advection of passive tracers in the three-dimensional lid-driven cylinder flow
introduced by Malyuga et al. (2002). The fluid is set in motion through time-
periodic forcing by in-plane motion of one endwall via a given forcing protocol.
Tracer advection is studied in a Lagrangian framework by examining the topological
properties of the coherent structures that form in the three-dimensional web of paths
of passive tracers (Malyuga et al. 2002; Speetjens, Clercx & van Heijst 2004). Such
coherent structures geometrically determine the transport properties of the flow and
in-depth knowledge of their formation and topological characteristics, and response
to parametric variations is the key to better understanding, and ultimately, systematic
manipulation, of three-dimensional mixing. It must be stressed that coherent structures
here refer to geometrical entities in the web of Lagrangian tracer paths (e.g. invariant
material surfaces). This notion must not be confused with coherent structures in the
Eulerian flow field (e.g. vortices).

Theoretical frameworks for three-dimensional Lagrangian transport studies
primarily expand on the classical Hamiltonian concept of action-angle variables
by (local) representation of coherent structures as invariant surfaces and curves
defined by constants of motion, denoted actions in Hamiltonian terminology (see e.g.
MacKay 1994; Mezić & Wiggins 1994; Cartwright, Feingold & Piro 1996; Mezić 2001;
Gómez & Meiss 2002; Mullowney, Julien & Meiss 2008). A promising recent concept
with Hamiltonian foundation and developed specifically for mixing applications is
found in the linked twist map (Sturman, Ottino & Wiggins 2006; Meier, Lueptow &
Ottino 2007; Sturman et al. 2008). Establishment of a comprehensive Hamiltonian-
like framework for three-dimensional topological transport studies, and then, in
particular, response scenarios to perturbations and routes to chaos, is nonetheless in
its infancy. The most important generalization of classical Hamiltonian mechanics to
three-dimensional systems is perhaps the three-dimensional counterpart to the well-
known Kolmogorov–Arnold–Moser (KAM) theorem describing the fate of invariant
tori under weak perturbations (refer e.g. to Cheng & Sun 1990; Mezić & Wiggins
1994; Broer, Huitema & Sevryuk 1996). However, similar universal response scenarios
for coherent structures of different topology remain outstanding.

The discussion hereafter concentrates on a fundamental transport phenomenon
discovered in previous studies of the above cylinder flow: the merger of coherent
structures formed in the non-inertial limit (vanishing Reynolds number Re) into
intricate new structures embedded in chaotic regions upon introducing weak fluid
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inertia (Re � O(0.1)) (Speetjens, Clercx & van Heijst 2006a ,b). Key to this merger is
a mechanism termed resonance-induced merger (RIM) by which coherent structures
of the non-inertial limit develop local defects for small Re > 0; these defects, in
turn, trigger the beforementioned merger with other structures. RIM is important
from both a mixing and nonlinear dynamics perspective in that it brings about a
qualitative change in three-dimensional transport properties (newly-formed structures
have a fundamentally different topology than their non-inertial parents) and opens
up an essentially three-dimensional route to global chaos.

Deeper insight into RIM is on two grounds potentially relevant in a wider scope.
First, part of the involved coherent structures are spheroidal invariant surfaces, which
topologically differ from the classical invariant tori. Second, the non-inertial limit of
the present cylinder flow closely relates with configurations considered in literature:
(i) generic volume-preserving systems with invariant surfaces (Mezić & Wiggins 1994;
Gómez & Meiss 2002; Mullowney et al. 2008) and (ii) the continuum representation
of tumbled granular flows (Meier et al. 2007; Sturman et al. 2008). The link with the
latter is particularly intimate in that spheroidal invariant surfaces play a central role
in both systems. Hence, findings on RIM, and their reconciliation with said systems,
may contribute to further development of the beforementioned three-dimensional
theoretical framework and application of fundamental insight to realistic transport
problems.

Primary objective of the present study is further exploration of the intriguing
phenomenon of RIM by addressing the following two issues: (i) establishing the
degree of universality of RIM and (ii) paving the way to experimental studies on
RIM. To these ends the occurrence and manifestation of RIM is to be examined
in a number of cylinder flows that, first, are distinct from one another as well as
from that considered in Speetjens et al. (2006a ,b) and, second, admit experimental
investigations of RIM.

The exposition is organized as follows. Section 2 introduces the physical problem
and model flows examined in this study. The theoretical framework for the topological
approach towards tracer advection is outlined in § 3. Topological analyses of the
model flows in the non-inertial limit are presented in § 4. The response of the several
non-inertial topological states to weak fluid inertia is investigated in § 5. Finally,
conclusions are drawn in § 6.

2. Problem definition
2.1. Flow model and tracer kinematics

Time-periodic flow inside a three-dimensional square cylinder [r, θ, z] = [0, R] ×
[0, 2π] × [−H/2, H/2], with R being the radius and H = 2R being the height, is
considered. The fluid is set in motion via time-periodic repetition of a sequence of n

piecewise steady translations (forcing steps) of the bottom wall by prescribed forcing
protocols. These forcing steps occur at velocity U and are of equal duration Tstep = T/n,
with T being the period time of one sequence. A schematic of the configuration is
shown in figure 1 (arrows indicate translation directions of the bottom wall) during
flow forcing. The forcing protocols will be specified below.

We assume that highly viscous flow conditions such that intermediate unsteady
transients during switching between forcing steps are negligible: Tν/Tstep = R2/νTstep �
1, with Tν = R2/ν being the viscous time scale and Tstep as introduced above. Under
this premise the internal flow consists of piecewise steady flows governed by the



8 Z. Pouransari, M. F. M. Speetjens and H. J. H. Clercx

Step 1
Step 2

Step n

z

y

x

θ0

R

H = 2R

Figure 1. Schematic of the three-dimensional cylindrical flow domain and the flow forcing
by piecewise steady translations of the bottom wall. R, H and U indicate radius, height and
translation velocity, respectively; arrows indicate translation directions of the bottom wall.

non-dimensional steady Navier–Stokes and continuity equations:

Re u · ∇u = −∇p + ∇2u, ∇ · u = 0. (2.1)

The motion of passive tracers in this flow is governed by the kinematic equation:

dx
dt

= u, x(0) = x0, (2.2)

which describes the evolution of the positions x(t) of tracers released at x0. The
general solution to (2.2) reads x(t) = Φ t (x0) and uniquely determines the current
position x for a given initial tracer position x0. The corresponding discrete mapping
is defined by xk+1 = ΦT (xk), where xk is the tracer position after k periods of the
time-periodic forcing protocol. The remainder of the study concerns discrete mappings
ΦT only, the subscript T of which are dropped for brevity. The corresponding tracer
dynamics will be investigated in terms of Poincaré sections; these are the subsequent
tracer positions after each period as if illuminated by a stroboscope in phase with
the flow forcing (Ottino 1989). The Poincaré sections of tracers released at strategic
locations in the domain enable visualization of the flow topology. The composition
of this flow topology is determined by several features, which will be discussed
in § 3.

2.2. Forcing protocols

Protocol-A’ is a two-step forcing protocol; the first step is in the positive x-direction;
the second step is under an angle 0 � θ0 � π with respect to the x-axis:

ΦA′
=

⎧⎪⎨
⎪⎩

Φ1 : U in θ = 0 direction 0 � t <
T

2
,

Φ2 : U in θ = θ0 direction with respect to x-axis
T

2
� t < T .

(2.3)

The general family of two-step forcing protocols has been termed Protocol-A’, this
is a generalization of Protocol-A’ considered in Speetjens et al. (2004) (θ0 = π/2).
Protocol-A’ is schematically shown in figure 2(a). The arrows indicate direction of
motion of the bottom wall during the forcing steps.

The second protocol is a three-step forcing protocol with the bottom wall describing
a closed path along an equilateral triangle (θ0 = 2π/3) following figure 2(b). It is
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Figure 2. Time-periodic forcing protocols. (a) Two-step open forcing according to
Protocol-A’; (b) three-step closed forcing according to Protocol-T; (c) four-step closed forcing
according to Protocol-S. Arrows indicate path followed by bottom wall.

denoted Protocol-T and defined according to:

ΦT =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Φ1 : U in θ = 0 direction 0 � t <
T

3
,

Φ2 : U in θ = 2π/3 direction
T

3
� t <

2T

3
,

Φ3 : U in θ = 4π/3 direction
2T

3
� t < T .

(2.4)

The third protocol is a four-step forcing protocol with the bottom wall describing a
closed path along a square (θ0 = π/2) following figure 2(c). It is denoted Protocol-S
and defined as:

ΦS =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ1 : U in θ = 0 direction 0 � t <
T

4
,

Φ2 : U in θ = π/2 direction
T

4
� t <

T

2
,

Φ3 : U in θ = π direction
T

2
� t <

3T

4
,

Φ4 : U in θ = 3π/2 direction
3T

4
� t < T .

(2.5)

Protocol-A’ is an open protocol in the sense that the wall follows an open path.
Repetition for many periods thus, in practice, requires an infinitely large moving
wall. This renders Protocol-A’ unsuitable for long-term laboratory experiments.
Protocols-T and S, on the other hand, are both closed protocols that can be
repeated indefinitely with a finite-size wall. This makes them well suited for laboratory
experiments.

The piecewise steady nature of the flow restricts time-dependence to the
instantaneous change of direction after each forcing step. This implies that, instead of
the period time T , the non-dimensional wall displacement during each forcing step,
given by

D =
UT

nR
(2.6)

is the relevant kinematic parameter. Thus, each forcing protocol is controlled by two
system parameters: Re and D.

Numerical resolution of the flow model (2.1) is performed by means of the spectral
scheme proposed in Speetjens & Clercx (2005). This algorithm yields highly accurate
solutions that admit satisfaction of the incompressibility constraint ∇ · u = 0 up to
near-machine precision. Performance analysis advanced highly accurate conservation
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of this constraint as an essential prerequisite for reliable numerical studies on tracer
advection in volume-preserving systems that conventional schemes tend to fall short
of Speetjens & Clercx (2005). Numerical integration of the kinematic equation (2.2)
employs an explicit third-order Taylor–Galerkin scheme and an interpolation scheme
for the velocity field based upon its spectral expansion. Important to note is that the
spectral scheme on numerical grounds imposes U∗ = U (r2 −1)2 instead of the constant
translation velocity U for the bottom wall. This is irrelevant to the present study,
however. Key topological properties of the non-inertial baseline flow are identical
for both boundary conditions: (i) closed streamlines self-symmetric about x =0 and
symmetrically arranged about y = 0 and (ii) presence of axisymmetric spheroidal
invariant surfaces. This, in consequence, implies that the non-inertial time-periodic
flows have the same symmetry properties and the same kind of invariant surfaces, and
therefore are topologically equivalent, for both boundary conditions. This particular
topological make-up plays a central role in the present study. (The relevance of such
features is discussed in more detail below.) Hence, results discussed hereafter are
fully representative of the physical situation. This modification manifests itself only
in quantitative sense in that physical topological features may differ slightly in shape
and physical Reynolds numbers corresponding with U are an estimated factor two
lower compared to their counterparts corresponding with boundary condition U∗
(Speetjens 2001).

3. Flow topology: relevant features
The flow topology in the Poincaré section is organized into coherent structures.

Extensive discussions on this topic may be found in e.g. Malyuga et al. (2002) and
Speetjens et al. (2004). The coherent structures and organizing properties relevant
in the current scope are periodic lines, specific symmetries and invariant surfaces
associated with constants of motion. These topological features are briefly discussed
below.

3.1. Periodic lines

Periodic points of order p (or period-p points) of a time-periodic map are material
points that will return to their initial positions after p periods: X =Φp(X). The local
behaviour at such period-p points is determined by

dxn+1 = F · dxn, F = ∇Φp|X =

3∑
i=1

λinini , (3.1)

with dx being the local frame of reference, F being the deformation tensor
representing the locally linearized mapping Φ and {λi , ni} being its spectral
decomposition (Malyuga et al. 2002). The eigenvalue spectrum Λ = {λ1, λ2, λ3}
determines the local dynamics and thus the type of periodic point, where solenoidality
of the flow field u implies λ1λ2λ3 = 1.

The complex dynamics of chaotic systems is intimately related to the emergence
of (in particular, lower-order) periodic points in the flow (Ottino 1989; Ott 1993).
In three-dimensional space, periodic points may either appear isolated or merge into
periodic lines. In the present context, only periodic lines are relevant and, consequently,
the recapitulation of topological features below pertains only to these entities.

Periodic lines are in essence the three-dimensional counterparts of periodic points
in two-dimensional systems in that they induce effectively two-dimensional tracer
dynamics in the local plane perpendicular to their tangent (here, each constituent
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point is periodic and not the whole periodic line). This tangent coincides with one of
the eigenvectors of F, say n1, that has a corresponding eigenvalue λ1 = 1, signifying
absence of motion in n1-direction. Eigenvectors n2,3 are normal to n1 and span the
beforementioned perpendicular plane; the associated eigenvalues dictate the dynamics
within this plane and are governed by

λ2,3 =
J − 1

2
±

√
D, D =

(J − 1)2

4
− 1, (3.2)

with J =trace(F) and D being the discriminant (Malyuga et al. 2002). (Cases with
λ1 �= 1 correspond to isolated periodic points. However, in the present context,
only periodic lines (consisting of periodic points with λ1 = 1) are relevant.) Two non-
degenerate types of periodic points in two-dimensional systems and, consequently, two
non-degenerate types of (segments of) periodic lines can be distinguished (Malyuga
et al. 2002):

(i) Elliptic type (D < 0): Λ = {1, eiφ, e−iφ}: Elliptic points on periodic lines form
the centres of elliptic islands within the local perpendicular plane that consist of
concentric closed orbits along which tracers undergo periodwise rotation at an angle
φ. In three-dimensional, these islands merge into elliptic tubes centred on elliptic
(segments of) periodic lines. Such tubes entrap and circulate tracers and thus form
barriers to global tracer transport. This, consequently, leads to efficient mixing.

(ii) Hyperbolic type (D > 0): Λ = {1, λ, 1/λ}: Hyperbolic points on periodic lines
are the time-periodic equivalent of saddle points in two-dimensional systems; the
associated stable and unstable manifolds delineate the principal transport directions
within the local perpendicular plane. Material is elongated along the unstable manifold
by a stretching rate λ > 1 and is compressed along the stable manifold by a
compression rate 1/λ < 1. In three-dimensional, the planar manifolds merge into
two-dimensional manifolds (i.e. surfaces) emanating from hyperbolic (segments of)
periodic lines. Transverse manifold intersection leads to exponential stretching of
material elements and, inherently, chaotic tracer advection.

Elliptic and hyperbolic segments on periodic lines are connected by parabolic points
(D = 0 and Λ = {1, 1, 1}). These are degenerate points in that, contrary to elliptic and
hyperbolic points, in the Poincaré section net fluid motion ceases in their proximity.
This particular behaviour near parabolic points will have fundamental ramifications
for the flow topology under weakly inertial conditions. This will be addressed in § 5.
Note that segmented periodic lines are a generalization of the single-type periodic
lines (alternatively termed normally hyperbolic/elliptic invariant curves) discussed in
Mezić & Wiggins (1994), Meier et al. (2007) and Sturman et al. (2008).

3.2. Symmetries

Symmetries are essential properties in that they organize the flow topology – and
thus affect the tracer dynamics – and facilitate identification of coherent structures
(Franjione, Leong & Ottino 1989; Ottino, Jana & Chakravarthy 1994; Meleshko &
Peters 1996). Two types of symmetries are relevant in the present context: (i) time-
reversal reflectional symmetries and (ii) ordinary non-reflectional symmetries. The
characteristics of these symmetries and their role in the flow topology and tracer
dynamics are elaborated below.

Periodic lines are intimately related to the so-called time-reversal reflectional
symmetries of the mapping Φ (Speetjens et al. 2004). These are symmetries of the
form

Φ = SΦ−1S, (3.3)
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where S = S−1 effectuates reflection about the associated symmetry plane IS , defined
as IS = S(IS). (Note that generic symmetry relations between operators A and B are
of the form A = S BS−1. For reflectional symmetries this relation becomes A = S BS

due to S = S−1.) Important in the present context is that time-reversal reflectional
symmetries of the form (3.3) imply periodic lines in the symmetry plane IS . This
enables systematic and efficient isolation of periodic lines. Roughly, the procedure
can be explained as follows. A material surface is released on the symmetry plane
IS and tracked for one period. The intersection of the original and tracked surfaces
corresponds with a period-1 line. Similarly, higher-order periodic lines can be found
in IS . Note that, in principle, further periodic lines may exist outside the symmetry
plane IS . However, the present study concentrates specifically on tracer dynamics
related with the period-1 line within IS .

Time-reversal reflectional symmetries in the present mappings of the form

Φ = ΦnΦn−1 · · · Φ1, (3.4)

derive from symmetries of the individual forcing steps. Two types are relevant in
this respect: time-reversal and ordinary reflectional symmetries within and between
steps. This leads to four kinds of reflectional symmetry relations for the forcing steps,
namely

Φ i = SΦ iS Φ i = SΦ i
−1S Φ i = SΦjS Φ i = SΦj

−1S, (3.5)

with subscripts i and j indicating different steps. These symmetry relations can, for
given forcing protocols, be identified via methods discussed in e.g. Malyuga et al.
(2002).

The second type of symmetries relevant in the present context are ordinary
symmetries

Φ = SΦS−1, (3.6)

which, in contrast with the generic connection between time-reversal reflectional
symmetries and periodic lines, affect the flow topology and tracer dynamics in
very case-specific ways (Meleshko & Peters 1996; Malyuga et al. 2002). Here, such
symmetries play a pivotal role in the response of the flow topology to inertial
perturbations.

3.3. Invariant surfaces

Invariant surfaces are material surfaces within which tracers remain trapped
indefinitely. Such surfaces may emanate from either particular symmetries or constants
of motion (Bajer 1994). Here, the latter case is of relevance.

Constants of motion are quantities G that are preserved by fluid elements during
their excursion in the flow domain. In the current scope of piecewise steady flows,
only constants of motion without explicit time-dependence are considered: G =G(x).
Preservation by fluid elements means they satisfy

dG

dt
= u · ∇G = 0, G(x) = G(x0), (3.7)

revealing that a tracer released at x0 remains trapped within the material surface
defined by the surface G(x0). Thus, in three-dimensional flows, constants of motions
parameterize families of iso-surfaces G = constant, within which tracers perform an
effectively two-dimensional motion. Absence of explicit time-dependence in G implies
that these invariant surfaces remain fixed in space at any time.
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Figure 3. Typical tracer paths: (a) closed streamlines of the base flow (steady translation
bottom wall in x-direction) and (b) open trajectory in Protocol-A’ (star indicates initial
position).

4. Flow topology: non-inertial limit (Re = 0)
4.1. Introduction

The non-inertial limit (Re = 0) serves as the baseline flow for examination of the
inertial perturbations of the flow. The piecewise steady flows are in the non-inertial
limit governed by the Stokes and continuity equations

−∇p + ∇2u = 0 ∇ · u = 0, (4.1)

coinciding with (2.1) for Re = 0 and are rotations of the base flow set up by steady
translation of the bottom wall in x-direction. Figure 3(a) gives this base flow,
consisting mainly of one large vortex with closed streamlines that are self-symmetric
about the plane x = 0 and form symmetric pairs about the plane y = 0 (Shankar
1997).

The tracer paths of the time-periodic flows consist of segments of the streamlines
of the consecutive forcing steps. This is demonstrated in figure 3(b), where a typical
tracer path is given for the two-step forcing protocol-A’. These tracer paths, in
contrast with the closed streamlines of the steady baseline flow in figure 3(a), are
open and thereby admit greater freedom of motion. This openness of tracer paths is
an essential (yet not sufficient) ingredient for chaotic advection – and thus efficient
mixing.

4.2. Symmetry analysis

Time-reversal reflectional symmetries (3.3), if existent, enable efficient and systematic
isolation of period-1 lines in the forcing protocols; such lines coincide with the
associated symmetry plane IS (§ 3). Furthermore, ordinary symmetries (3.6) may
provide further insight into the case-specific dynamics of the forcing protocols
(Malyuga et al. 2002). Such global symmetries can be derived from symmetry relations
of the form (3.5) between the forcing steps. The symmetry relations for the forcing
protocols considered here are derived below.
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Figure 4. The symmetry planes of the different forcing protocols. (a) Protocol-A’:
θ = (π + θ0)/2, (b) Protocol-T: θ = π/6 and (c) Protocol-S: θ = π/4.

The symmetry properties of the forcing steps of Protocol-A’ can be determined in
the same way as discussed in Speetjens et al. (2004). This yields

Φ1 = S(π+θ0)/2Φ
−1
2 S(π+θ0)/2, Φ2 = S(π+θ0)/2Φ

−1
1 S(π+θ0)/2,

Φ1 = Sθ0/2Φ2Sθ0/2, Φ2 = Sθ0/2Φ1Sθ0/2,

as particular symmetry relations relevant here, with S(π+θ0)/2 being a reflection about
the plane θ = (π + θ0)/2 (figure 4a) and, likewise, Sθ0/2 being a reflection about the
plane θ = θ0/2. Substitution of the time-reversal symmetries into (3.4) (n= 2) leads to

Φ = S(π+θ0)/2Φ
−1
1 S(π+θ0)/2S(π+θ0)/2Φ

−1
2 S(π+θ0)/2

= S(π+θ0)/2Φ
−1
1 Φ−1

2 S(π+θ0)/2

= S(π+θ0)/2Φ
−1S(π+θ0)/2, (4.2)

as time-reversal reflectional symmetry for Protocol-A’ about plane θ = (π + θ0)/2.
The existence of this symmetry means that this forcing protocol always possesses a
period-1 line, located within its symmetry plane. Similarly, an ordinary symmetry is
identified via

Φ = Sθ0/2Φ1Sθ0/2Sθ0/2Φ2Sθ0/2 = Sθ0/2Φ1Φ2Sθ0/2 = S̃ΦS̃−1, (4.3)

with S̃ = Sθ0/2Φ1. This symmetry has essential consequences for the response of the
flow topology to inertial perturbations (§ 5).

The flows due to the closed forcing protocols are structurally similar to the
reoriented duct flow considered in Speetjens, Metcalfe & Rudman (2006c) in that they
consist of a sequence of reorientations of the base flow that together describe a closed
loop. Therefore, the symmetry properties are equivalent. The symmetry properties of
the forcing steps read

Φ1 = S(π−θ0)/2Φ
−1
n S(π−θ0)/2,

Φ2 = S(π−θ0)/2Φ
−1
n−1S(π−θ0)/2, . . . ,

Φn = S(π−θ0)/2Φ
−1
1 S(π−θ0)/2,

⎫⎪⎬
⎪⎭ (4.4)

with S(π−θ0)/2 being a reflection about the plane θ = (π − θ0)/2. Substitution into (3.4)
gives

Φ = S(π−θ0)/2Φ
−1
1 S(π−θ0)/2S(π−θ0)/2Φ

−1
2 S(π−θ0)/2 · · · S(π−θ0)/2Φ

−1
n S(π−θ0)/2

= S(π−θ0)/2Φ
−1S(π−θ0)/2,
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Figure 5. Typical period-1 lines (curves) inside their symmetry planes (rectangular outline).
(a) Protocol-A’ for θ0 = π/2 and D = 5, (b) Protocol-T for D =14 and (c) Protocol-S for
D = 10. Dark and bright regions indicate elliptic and hyperbolic segments on the period-1
lines, respectively. Views are into the symmetry planes.

as time-reversal reflectional symmetry about plane θ = (π − θ0)/2. For the particular
forcings according to Protocol-T (θ0 = 2π/3) and Protocol-S (θ0 = π/2), this implies
symmetry planes θ = π/6 (figure 4b) and θ = π/4 (figure 4c), respectively.

Thus, closed protocols, similar to the open Protocol-A’, also always possess a
period-1 line. Essential difference with the latter is that an additional symmetry
as (4.3) is absent here. This causes important differences between the response of
Protocol-T and S to inertial perturbations compared to that of Protocol-A’, as will
be shown in § 5.

4.3. Period-1 lines

The above symmetry analysis revealed that the present forcing protocols all possess
time-reversal reflectional symmetries. This implies that period-1 lines sit within the
corresponding symmetry planes (figure 4) and can therefore be isolated by the
procedure outlined in § 3.

Figure 5(a) shows the period-1 line for Protocol-A’ for θ0 = π/2 and D =5 (curve)
inside the symmetry plane θ =3π/4 (rectangular outline). The dark and bright
segments of the period-1 line indicate elliptic and hyperbolic segments, respectively.

Note that the period-1 line is invariant under the ordinary symmetry S̃ according
to (4.3). Figures 5(b) and (c) give the period-1 lines for Protocol-T (D = 14) and
Protocol-S (D = 10), respectively, in the symmetry planes θ = π/6 and θ = π/4. Both
period-1 lines are significantly more convoluted than those of Protocol-A’ and,
moreover, exhibit stronger segmentation into hyperbolic and elliptic regions. These
effects are direct consequences of the greater complexity of the flow field compared
to Protocol-A’. Furthermore, the segmentation of periodic lines is essential to the
response to inertial perturbations investigated in § 5.

Variation of the displacement D brings about great changes in both shape and
segmentation of the period-1 lines. This is demonstrated for Protocol-T in figure 6,
where the progression of the period-1 line in the symmetry plane θ = π/6 is shown
for increasing D, with elliptic and hyperbolic segments indicated as before. By
increasing D, both the shape of the period-1 line and the extent of hyperbolic and
elliptic segments change dramatically. The shape becomes progressively convoluted
with growing D; the segmentation, on the other hand, exhibits a strongly nonlinear
dependence upon D. The progression of shape and segmentation of the period-1 line
for Protocol-S is very similar to that shown in figure 6.
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Figure 6. Period-1 line of Protocol-T shown within the symmetry plane θ = π/6 as a function
of the displacement D. (a) D = 1, (b) D = 6 and (c) D = 14. Dark and bright regions indicate
elliptic and hyperbolic segments on the period-1 line, respectively.
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Figure 7. Axisymmetric invariant surfaces and intra-surface dynamics. (a) Typical surfaces
and their concentric arrangement, (b) typical intra-surface dynamics containing elliptic islands
and chaotic regions and (c) fully chaotic intra-surface dynamics.

4.4. Invariant surfaces and intra-surface dynamics

The flows which are studied here have one constant of motion according to (3.7)
with axisymmetric invariant surfaces that are topologically equivalent to spheres
and concentrically arranged according to figure 7(a) (Malyuga et al. 2002). These
invariant surfaces imply effectively two-dimensional tracer motion (§ 3). Moreover,
the underlying constant of motion in combination with continuity implies that non-
degenerate periodic points dictating the intra-surface dynamics must be of the elliptic
or hyperbolic type (Gómez & Meiss 2002). Here, these periodic points correspond
with the intersection of the elliptic/hyperbolic (segments of) periodic lines and the
invariant surfaces. This has the important implication that the intra-surface motion is
essentially equivalent to that of two-dimensional time-periodic Hamiltonian systems.
This is demonstrated in figure 7 by the Poincaré sections of tracers released within
one invariant surface, revealing characteristic Hamiltonian dynamics. Figure 7(b)
gives an example with multiple chains of elliptic islands embedded within chaotic
seas; figure 7(c) with fully chaotic tracer motion. The Hamiltonian nature of the
intra-surface dynamics is investigated further below.

The intra-surface dynamics depends on two parameters: the bottom-wall
displacement D and the radius rs of the invariant surface (defined as the horizontal
distance from the invariant surfaces to the stagnation point on the cylinder axis
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Figure 8. Evolution of the intra-surface dynamics with increasing displacement D
demonstrated for Protocol-T in a given invariant surface. (a) D = 2, (b) D = 3, (c) D = 5,
(d ) D = 6, (e) D = 10 and (f ) D = 17.

that forms their common centre). Variations in these parameters result in changes in
dynamics similar to those found upon perturbation of two-dimensional Hamiltonian
systems. The progressions in intra-surface dynamics with variation of the above
parameters – inextricably linked with the segmentation of periodic lines – are of
particular importance for the response of the flow topology to inertial perturbations.

First, the effect of variation of the displacement D is considered. This is
demonstrated in figure 8 for one invariant surface of Protocol-T. For very short
displacement, tracers describe closed and nearly parallel orbits around the cylinder
axis (not shown), resulting in the formation of two adjacent period-1 elliptic islands,
centred on elliptic points near the two intersections of the surface with the cylinder
axis, covering the entire surface (figure 8a). This state corresponds dynamically with an
integrable Hamiltonian system. This is a state for which all trajectories are fully known
and predictable. States consisting entirely of elliptic islands are integrable; states
exhibiting (local) chaotic dynamics are non-integrable (Ott 1993). This is important
to note that the boundary between both islands cannot be determined; this may,
in principle, be any closed orbit between both centres. Increasing the displacement
causes breakup of the bottom period-1 island into two period-2 islands separated by a
narrow chaotic band (figure 8b). (This is consistent with period-doubling bifurcations
known from Hamiltonian mechanics.) Growing displacement causes expansion of the
two period-2 islands, followed by their breakup into further islands and the formation
of a surrounding chaotic sea (figures 8c and 8d ). The top island, meanwhile, remains
intact and only diminishes in size somewhat while gradually wandering downhill along
the facing side of the invariant surface. Further increasing D causes expansion of the
chaotic sea at the expense of the islands originating from the bottom island, save one
surviving island on the rear side of the invariant surface, and further diminution and
downward migration of the (original) top island on the facing side (figures 8e and 8f ).
This evolution with increasing D is essentially similar to that of a two-dimensional
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Figure 9. Evolution of the intra-surface dynamics with increasing radius rs of the invariant
surface demonstrated for Protocol-T with given displacement D = 14. (a) rs = 0.125;
(b) rs = 0.25; (c) rs = 0.325; (d ) rs = 0.5; (e) rs = 0.75; (f ) rs = 0.825. Note that shown surfaces
are not to scale; they increase in size from panels (a) to (f ) in the actual configuration.

Hamiltonian system upon progressive departure from its integrable state (Ott 1993).
Moreover, it generally depends nonlinearly on the perturbation parameter (here D)
in that stronger perturbation must not necessarily result in more chaotic dynamics;
existing islands, after diminution, may again grow in size or new islands may form.

The evolution of the intra-surface dynamics as a function of the radius of the
invariant surface is demonstrated in figure 9 for Protocol-T at the given displacement
D =14. This evolution has basically the same Hamiltonian characteristics as that
shown for variation of D in figure 8: nonlinear progression of the flow topology with
monotonic variation of the perturbation parameter rs . (Radius rs parameterizes the
intra-surface dynamics upon progressing through the invariant surfaces from their
common centre towards the cylinder wall. It is not a perturbation parameter in
the strict sense though, since it cannot be controlled externally.) However, essential
difference with the above is that here the progression takes place between two
(protocol-independent) integrable states: rs = 0 (stagnation point) and rs = R (no-
slip boundary). Figure 9(a) shows the invariant surface at rs = 0.125, closest to the
integrable state rs = 0, which is covered by three elliptic islands that are separated
by narrow chaotic bands (not indicated). Increasing the radius to rs = 0.25 causes
coalescence of the two islands on the bottom side of the surface, resulting in a
state comprising two elliptic islands, occupying bottom and top sides of the surface
(figure 9b). By increasing the radius further, the island on the bottom side entirely
disappears in favour of a chaotic sea, while the top island remains intact yet decreases
significantly in size (figure 9c). Further progression of rs reveals migration of the top
island from the facing side (figure 9c) towards the rear side (figures 9d and 9e) of
the invariant surface while growing in size; this migration is accompanied by the
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emergence of a new island on the top of the surface (figure 9e). This island rapidly
increases in size and covers the top half of the invariant surface while further smaller
islands appear in the chaotic sea (figure 9f ). This reflects the fact that the tracer
dynamics become more regular upon approaching the outer integrable state (i.e. no-
slip boundary). This sets in from top down due to the fact that the flow forcing occurs
via the bottom wall.

The progressions for Protocol-A’ and Protocol-S are in essence the same in that
they qualitatively follow the scenarios demonstrated above for Protocol-T. Differences
manifest themselves predominantly in the composition of the flow topologies. More
elaborate forcing protocols, for instance, tend to result in more complex topologies. A
further difference is that for the open Protocol-A’ the chaotic seas grow substantially
larger with increasing rs – and typically cover entire invariant surfaces – and the
dynamics becoming more regular upon approaching the no-slip boundary sets in for
higher rs than in the closed Protocols-T and S. The behaviour found for Protocol-
A’ in Speetjens et al. (2006a) and simulations of other open forcings (not shown)
strongly suggest this to be a generic difference between open and closed forcing
protocols. Thus the closed forcing protocols tend to be dynamically more constrained
than their open counterparts in the sense that global chaos is less likely to occur and,
instead, arrangements of islands remain present. This has important consequences for
the response to inertial perturbations. This will be discussed in § 5.

Better understanding of the response to perturbations is for two reasons of potential
importance in a broader context. First, part of the involved coherent structures are
spheroidal invariant surfaces, which topologically differ from the classical invariant
tori. Second, the non-inertial limit of the present cylinder flow closely relates with
configurations considered in literature, viz. with generic volume-preserving systems
accommodating invariant surfaces (Mezić & Wiggins 1994; Gómez & Meiss 2002)
and with the continuum representation of tumbled granular flows (Meier et al. 2007;
Sturman et al. 2008). These granular flows and the non-inertial cylinder flow are
particularly similar by sharing essential features: time-periodic flow composed of
systematic reorientation of a base flow, spheroidal invariant surfaces and periodic
lines of elliptic and hyperbolic type. Insight into the tracer dynamics subject to
perturbations may, through these links with other systems, therefore contribute to
further theoretical developments on generic three-dimensional Lagrangian transport
and translation of fundamental knowledge into practical applications. In-depth
investigation of the connection with other systems – and the generality of obtained
results – is beyond the present scope, however.

5. Flow topology: response to weak inertial perturbations (Re > 0)
5.1. Introduction

Under inertial conditions, the fluid motion is governed by (2.1), with the Reynolds
number Re controlling the strength of the inertial effects. Inertia introduces centrifugal
forces to the momentum balance and thus causes the streamlines of the stepwise steady
flows, shown in figure 3(a) for the first forcing step of the non-inertial limit Re = 0, to
become open. This destroys the time-reversal reflectional symmetry of the individual
forcing steps and, consequently, the time-reversal reflectional symmetries (4.2) and (4.5)
of the forcing protocols considered here. Only the ordinary non-reflectional symmetry
(4.3) of Protocol-A’ is preserved for Re > 0. This symmetry breaking brings about
two fundamental changes in the flow topology: (i) the constant of motion vanishes
and tracers are no longer restricted to the invariant surfaces shown in figure 7(a)
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and (ii) the period-1 lines disclosed in § 4 transform into isolated period-1 points and
the associated one-dimensional manifolds (Speetjens et al. 2006a). However, though
strictly no longer present, the invariant surfaces and periodic lines dominate the
dynamics in the limit of weak inertia through the so-called adiabatic behaviour in
ways first investigated in Speetjens et al. (2006a ,b) for Protocol-A’. Hereafter, these
investigations are expanded to Protocols-A’, T and S in order to demonstrate the
generic nature of phenomena observed for Protocol-A’. Moreover, the investigations
on Protocols-T and S are to pave the way to future experimental studies on long-term
three-dimensional tracer dynamics. These forcing protocols admit infinite repetition
with a finite wall and thus can be realized in a laboratory set-up without restriction
on the number of forcing cycles.

5.2. Formation of adiabatic structures

Coherent structures in the non-inertial flow topology may (partially) survive in an
approximate manner under weak nonlinear perturbation (here, by inertia) on grounds
of the so-called averaging principle (Arnold 1978). Such surviving structures are
termed adiabatic structures. In the present context, adiabatic structures may emanate
from both the invariant surfaces and the elliptic islands they hold.

The centrifugal forces set up a secondary motion transverse to the primary motion
within the invariant surface and cause drifting of tracers transverse to this invariant
surface. The drifting tracers occupy a shell of finite thickness that is centred upon the
invariant surface of the non-inertial limit and gradually expands as time progresses.
However, for sufficiently small Re > 0 this expansion is extremely slow, meaning that
invariant surfaces approximately survive in the form of thin shells (constituting the
corresponding adiabatic structures). The tracer remains confined to the thin adiabatic
shell centred upon the original invariant surface for prolonged periods of time.

Closed orbits of the elliptic islands within adjacent invariant surfaces coalesce into
concentric tubes centred upon the elliptic segments of the periodic line under weak
nonlinear perturbation. Thus, elliptic tubes are formed as adiabatic counterpart to the
elliptic islands (not shown). This happens in the same Re-range as that of formation
of the adiabatic shells. Beyond this range, elliptic tubes disintegrate.

The above formation of elliptic tubes is in accordance with the transformation of
two-action maps (tracers confined to invariant closed curves) into one-action maps
(tracers confined to invariant tori) for arbitrarily small perturbations (Cartwright
et al. 1996). The survival of (at least a subset of) invariant tori thus created, in turn,
is in accordance with the three-dimensional counterpart to the well-known KAM
theorem (Cheng & Sun 1990; Mezić & Wiggins 1994; Broer et al. 1996). Noteworthy
to mention is that the elliptic tubes are finite, signifying incomplete invariant tori and
thus implying that these theoretical predictions also hold true on a local level.

The formation of adiabatic shells and tubes basically occurs in all forcing protocols
considered here. However, an essential dependence upon the forcing can be observed in
that the Re-range accommodating adiabatic behaviour narrows significantly for more
elaborate protocols; the typical range for the three-step Protocol-T and four-step
Protocol-S is Re � 0.01 and Re � 0.005, respectively, compared to Re � 0.1 for the
two-step Protocol-A’. Furthermore, the adiabatic shells form only in regions where the
underlying invariant surfaces accommodate chaotic advection; intra-surface regions
with non-chaotic dynamics (e.g. elliptic islands and the direct proximity of cantori)
result in holes in the adiabatic shells due to the local breakdown of the averaging
principle. (In essence, a local competition between formation of an adiabatic shell
and an elliptic tube takes place that is won by the tube formation due to the
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Figure 10. Formation of closed adiabatic structures in Protocol-A’ (θ0 = π/3, D = 5) by
RIM (Re = 0.1) visualized by the Poincaré section of a single tracer. (a) Merger of elliptic
tubes centred on outer elliptic segments of the period-1 line (curve; dark/bright indicate
elliptic/hyperbolic segments) and adiabatic shells in perspective view and (b) close-up of the
merger in the rz-projection.

fact that islands entrap tracers within subregions of the invariant shell and thus
prevent such tracers to densely cover regions of the invariant surface.) Weak inertial
perturbation thus creates multiple families of adiabatic structures, viz., the adiabatic
shells corresponding with invariant surfaces and the families of concentric tubes
corresponding with the elliptic segments of the periodic lines. However, these families,
rather than coexisting, can interact. Such interaction and its effect upon the tracer
dynamics is examined below.

5.3. Merger of adiabatic structures in Protocol-A’

Previous studies on Protocol-A’ for θ0 = π/2 revealed that adiabatic shells and elliptic
tubes may merge by a mechanism termed resonance-induced merger (RIM) (Speetjens
et al. 2006a ,b). RIM occurs near parabolic points (discriminant D = 0 and eigenvalue
spectrum Λ = {1, 1, 1}; see § 3), where Φ(x) = x not only holds for the period-1 point
itself, but to good approximation also for its finite proximity. Thus, net motion ceases
near the parabolic points in the Poincaré section; fluid elements – and thereby tracers
– resonate near these points in the sense that they, similar to true period-1 points,
return to their initial position after each cycle. This resonance results in breakdown of
the averaging principle – and formation of holes in the adiabatic shells – specifically
in those regions where families of elliptic tubes start or end. (Consult e.g. Vainchtein,
Neishtadt & Mezić (2006) for a more detailed discussion on breakdown of the
averaging principle by resonances.) This leads to the remarkable merger of tubes
with adiabatic shells and the formation of intricate adiabatic structures. (The direct
consequence of the segmentation of periodic lines.) Figure 10 demonstrates this for
Protocol-A’ at θ0 = π/3 and D = 5 by way of the Poincaré section of a single tracer
released in the direct proximity of the elliptic segment on the left and tracked forward
and backward in time. This exposes the formation of fully closed adiabatic structures
comprising two adiabatic shells connected by two elliptic tubes centred on the period-1
line by RIM. Two essential conditions underlie the formation of these particular
adiabatic structures. First, chaotic advection within the associated invariant surfaces
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everywhere outside the islands centred on the period-1 line. This ensures formation of
complete adiabatic shells, save the holes that facilitate merger with the tubes. Second,
the two intersections of the period-1 line with each invariant surface coincide with
the elliptic segment of the period-1 line. This ensures occurrence of RIM – and thus
merger with tubes – at both sides.

RIM occurring at both sides – and the above-mentioned formation of fully-closed
adiabatic structures – is a direct consequence of the ordinary symmetry (4.3). The
latter causes pairwise occurrence of period-1 points through

X1 = Φ(X1) → X2 = S̃(X1) = Φ(X2), (5.1)

using S̃(X1) = S̃Φ(X1) = S̃ΦS̃−1S̃(X1) = ΦS̃(X1) = Φ(X2), with X2 being the image

of X1 created by action of the symmetry operator S̃. Moreover,

S̃(X2) = S̃2(X1) = Φ(X1) = X1, (5.2)

meaning that X1 is, in turn, the image of X2. These relations hold for any Re. In
the non-inertial limit, X1 residing on the period-1 line in the symmetry plane (see
e.g. figure 5a) implies that X2 must also reside in this plane – and thus on this line.

Furthermore, in the non-inertial limit, the symmetry S̃ (by virtue of the properties
of its defining operators Sθ0/2 and Φ1) maps material points only within an invariant
surface, implying that X1,2 reside within the same invariant surface and thus identify
with its two intersections by the period-1 line. Moreover, the pair (X1, X2) is of the
same type, that is, the associated deformation tensors according to (3.1) have identical
eigenvalues,

F1 =
∂Φ

∂x

∣∣∣∣
X1

=

3∑
i=1

λinini → F2 =
∂Φ

∂x

∣∣∣∣
X2

=

3∑
i=1

λi S̃(ni)S̃
−1(ni), (5.3)

with λi and ni being the eigenvalues and eigenvectors, respectively, defined before.
These symmetry-induced properties have the important implication that disconnected
elliptic segments on the period-1 line, if existent, form interrelated pairs each of which
intersect the same set of invariant surfaces in different regions. (The period-1 line
in figure 5a e.g. contains two elliptic segments that form an interrelated pair.) RIM
causes the tubes centred on the interrelated elliptic segments to connect with two
adiabatic shells and form one closed adiabatic structure. This is demonstrated in
figure 10 for θ0 = π/3, D = 5 and Re = 0.1. Figure 10(a) gives the perspective view
on this newly formed structure and its position relative to the period-1 line (curve);
figure 10(b) gives its projection in the rz-plane, clearly revealing the parts made
up by the tubes and adiabatic shells. (Note the period-1 line contains three elliptic
segments: two segments attached to the cylinder wall, forming an interrelated pair,
and an isolated segment in the middle.) The ends of shown tubes centre on the
elliptic segments, yet are relatively far away from the parabolic points bounding the
elliptic segments (not indicated). These tubes are in fact part of a family of concentric
tubes that become longer – and thus their ends progressively approach the bounding
parabolic points – the smaller the diameter. The adiabatic behaviour demonstrated
in figure 10 is the same as that observed for θ0 = π/2 in Speetjens et al. (2006a ,b) and
occurs in Protocol-A’ for any angle θ0.

Essential difference with the case θ0 = π/2 studied before is the formation of the
isolated elliptic segment in the middle of the period-1 line. This segment in fact
comprises two sections separated by the stagnation point (intersection period-1 line
with cylinder axis). The elliptic tubes emanating from this segment also exhibit RIM
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Figure 11. (Colour online) Formation of closed adiabatic structures in Protocol-A’ (θ0 = π/6,
D = 5) by RIM (Re = 0.1) visualized by the Poincaré section of a single tracer. (a) Merger
of elliptic tubes centred on the isolated elliptic segment of the period-1 line (curve; black/
red indicate elliptic/hyperbolic segments) and adiabatic shells in perspective view and
(b) rz-projection. Period-4 resonances are highlighted (cyan).

with adiabatic shells, yet in a somewhat different manner. This is demonstrated in
figure 11 for θ0 = π/6, D = 5 and Re =0.1. The outer tube ends, rather than connecting
with shells, undergo bifurcation into pairs of period-2 tubes near the parabolic points
separating the inner elliptic segment and the hyperbolic segments (red) on the period-
1 line, as a result of the bifurcations in intra-surface dynamics with increasing rs

(similar to that demonstrated in figure 9 for Protocol-T). These period-2 tubes are
centred on period-2 lines (not shown) that intersect the period-1 line at the said
parabolic points and connect with adiabatic shells via RIM. Moreover, these shells
are leaky due to holes created by cantori outside their connecting region with the
tubes. This leakiness facilitates random tracer exchange with the environment and
switching between leaky shells, and thus creates the chaotic sea surrounding the
adiabatic structure. The indirect RIM via bifurcating tubes and leakiness of adiabatic
shells is in essence the same as that observed in Speetjens et al. (2006a) for period-2
tubes in the case θ0 = π/2. For generic cases of Protocol-A’ this may expose itself more
elaborately owing to the larger variety in arrangement of islands in the underlying
invariant surfaces.

The inner tube ends connect with an inner leaky shell through RIM also. However,
here a new kind of resonance comes into play that is intimately related to the
parabolic points underlying the above instances of RIM: period-1 points within
elliptic segments with eigenvalue spectrum Λ =(1, i, −i) (discriminant D = −1). These
points, highlighted in cyan in figure 11, effectuate resonance every fourth mapping,
i.e. Φ4(x) ≈ x in their direct vicinity, and may thus be considered a somewhat weaker
variant of the periodwise resonance Φ(x) ≈ x near parabolic points (D = 0). The
resonances associated with D = −1 are termed period-4 resonances hereafter.

The period-4 resonances, since the corresponding value of the discriminant D = −1
cannot be determined exactly in numerical search algorithms, are associated with
those period-1 points that meet |D + 1| � ε, with ε � 1. (At parabolic points
separating elliptic and hyperbolic segments, on the other hand, D always changes
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Figure 12. Formation of adiabatic structures in Protocol-T (D = 14) by RIM (Re = 0.01)
visualized by the Poincaré section of a single tracer. (a) Perspective view and (b) top view.

sign, meaning these points admit accurate and reliable numerical isolation.) Hence,
the period-4 resonances may emerge as narrow segments instead of isolated points in
the numerical results. Note that this in fact is consistent with the approximate nature
of the averaging principle.

5.4. Merger of adiabatic structures in Protocol-T
The closed protocols exhibit in essence similar behaviour as found for Protocol-A’ in
that merger between tubes and shells also occurs via RIM. Figure 12 gives a typical
situation for Protocol-T at D =14 and Re =0.01. Clearly distinguishable are coherent
structures comprising tubes and adiabatic shells embedded in a chaotic environment.
However, despite this resemblance, manifestations of RIM are considerably more
diverse compared to the above cases (in part) due to a fundamental difference with
Protocol-A’, namely the absence of an ordinary symmetry as (4.3). This enlarges
the geometrical freedom of coherent structures in that shell-tube connections must
no longer emerge pairwise and may also occur isolated. An important quantitative
difference is the significantly stronger variation in intra-surface dynamics relative to
Protocol-A’. These differences admit greater dynamical richness. This is demonstrated
below.

Considered is RIM associated with the period-1 line for Protocol-T at D = 14
and Re = 0.01, shown in figure 6(c), accommodating elliptic and hyperbolic segments
as indicated. Besides the parabolic points separating the latter segments, isolated
period-4 resonances as discussed above, as well as an essentially similar kind, occur:
isolated period-1 parabolic points within elliptic segments (denoted isolated period-
1 resonances in the following). Figure 13(a) shows the period-1 line including
the isolated period-1 (blue) and period-4 (cyan) resonances, clearly revealing the
considerably more complex segmentation of the period-1 line compared to those of
Protocol-A’.

The isolated resonances trigger RIM in essentially the same way as before. This is
demonstrated in figures 13(b–d) by means of the Poincaré section of a tracer released
near the isolated period-1 resonance just below the midplane z =0. The projection
in the rz-plane exposes the merger of an elliptic tube centred on the elliptic segment
between the isolated period-1 resonance and the cylinder wall with an inner and
outer adiabatic shell in a similar manner as shown in figure 10 for Protocol-A’. This
tube belongs to the same family as that extending from the upper part of the inner
adiabatic shell outlined in figure 12(a). The outer adiabatic shell in figure 13 forms
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Figure 13. (Colour online) Formation of adiabatic structures in Protocol-T (D = 14) by RIM
(Re = 0.01) due to isolated period-1 resonances visualized by the Poincaré section of a single
tracer. (a) Period-1 line with elliptic (black) and hyperbolic (red) segments and isolated period-1
(blue) and period-4 (cyan) resonances as indicated, (b) rz-projection of adiabatic structure,
(c) perspective view of adiabatic structure and (d ) top view of adiabatic structure. Arrows
indicate holes in outer shell due to higher-order elliptic tubes.

only in the lower region near the bottom wall due to the large island covering the
upper part of the associated invariant surfaces near the solid walls and, furthermore,
has sizeable holes (indicated by arrows) resulting from the higher-order islands in
the bottom-wall region (figure 9f ). (The latter islands merge into the elliptic tubes
arranged symmetrically about the symmetry plane in figure 12.) The incompleteness
of the outer shell enables random tracer exchange with the environment, similar to
that observed before for Protocol-A’, and contributes to the formation of the chaotic
sea enveloping the adiabatic structures in figure 12.

Figure 14(a) shows a companion structure of that in figure 13. Principal difference
with the latter is that here the outer adiabatic shell, instead of being incomplete and
leaking tracers into the chaotic sea, merges with a large elliptic tube emanating from
the beforementioned large islands covering the outer invariant surfaces. This large
tube, in turn, reattaches to an inner adiabatic shell via RIM at the isolated period-1
resonance near the right deflection point that approximately coincides with the inner
shell corresponding with the narrow tube. This is demonstrated in figure 14(b–d ). The
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Figure 14. Formation of adiabatic structures in Protocol-T (D = 14) by RIM (Re = 0.01)
due to isolated period-1 resonances visualized by the Poincaré section of a single tracer: (a)
perspective view of entire adiabatic structure; (b) perspective view of adiabatic structure with
large tube and inner shell highlighted; (c) rz-projection of adiabatic structure; (d ) portion of
adiabatic structure in slice of thickness δ =0.1 centred on symmetry plane. The period-1 line
(curve) is included with elliptic (black) and hyperbolic (red) segments and isolated period-1
(blue) and period-4 (cyan) resonances as indicated. Arrows indicate instances of RIM.

colour-coding of the period-1 line is as before. Black tracers visualize the narrow tube
and its associated inner and outer adiabatic shells; coloured tracers visualize the large
tube and the inner shell to which it connects. (Recall that shown points correspond
to the Poincaré section of a single physical tracer.) Figure 14(b) reveals the transition
from outer shell into the large tube via the gap separating the black and coloured
regions. (This gap coincides with the transition from chaotic region to the elliptic
islands in figure 9f.) Important to note is that, though an adiabatic shell and an elliptic
tube connect here, RIM due to the period-1 line is not the underlying mechanism
here. Figure 14(c) (rz-projection) and figure 14(d ) (slice of thickness δ = 0.1 centred
on symmetry plane) expose the three instances of RIM (indicated by arrows) by which
the adiabatic shells and tubes merge into one adiabatic structure. However, despite the
formation of a complete structure, tracer exchange with the environment nonetheless
occurs via the relatively ill-defined (and therefore leaky) inner shells. Moreover, these
inner shells must, contrary to Protocol-A’, not necessarily emanate from the same
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Figure 15. Formation of adiabatic structures in Protocol-T (D = 14) in the interior region
(Re = 0.01) visualized by the Poincaré section of a single tracer (magenta star indicates initial
position). (a) Perspective view, (b) close-up of the perspective view, (c) rz-projection and
(d ) close-up of slice of thickness δ =0.1 centred on symmetry plane. The period-1 line (curve)
is shown by elliptic (black) and hyperbolic (red) segments, with isolated period-1 (blue) and
period-4 (cyan) resonances as indicated. Symbols point out features as explained in the text.

invariant surface on grounds of the absence of a symmetry of the type (4.3). This
may further promote leakage via the inner shells. The dynamics within the interior
of the domain enclosed by the above adiabatic structures is of even greater richness
due to the intricate segmentation of the period-1 line (figure 13a) in this region.
However, RIM(-like) behaviour plays an essential role here as well. Figure 15(c)
demonstrates this for the structures visualized by a single tracer released in the
proximity of the period-1 line at the position indicated by the magenta star in panel.
Regression in time causes upward migration via an elliptic tube towards the isolated
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period-1 resonance P1. Here, bifurcation into a higher-order tube occurs that, in turn,
undergoes bifurcation into two higher-order tubes that attach to an outer adiabatic
shell in the region P2. Thus, the period-1 tube connects through bifurcations with the
outer shell via indirect RIM akin to that observed before for Protocol-A’ (figure 11).
Progression in time causes downward migration of the tracer by the same elliptic
tube as before towards the isolated period-1 resonances at P3. (Note that, somewhat
surprisingly, the tube is unaffected by the isolated period-4 resonance it encloses. This
suggests its effect on the dynamics is too weak or too localized to prevent continuation
of the tube. Further investigation is beyond the present scope, however.) Here, the
elliptic tube bifurcates into two higher-order tubes that envelop a hyperbolic segment
on the period-1 line containing period-1 resonances before merging into a single
elliptic tube again (signifying a reversed bifurcation) at the two isolated period-1
resonances sitting at P4. This tube attaches via RIM to the beforementioned outer
adiabatic shell near the period-1 resonance P5. Thus, an adiabatic structure is formed
that comprises an intricate arrangement of interconnected (higher-order) tubes that
connects two regions of a leaky adiabatic shell. (The lower period-4 resonance in
fact coincides with this shell and thus contributes to its leakiness.) This structure
exchanges material with the environment through the latter shell. These observations
for the interior of the domain lift but a tip of the veil of the complex dynamics taking
place in this region. Further investigation is beyond the present scope and is to be
the subject of future studies.

5.5. Merger of adiabatic structures: generalization

The adiabatic behaviour discussed above generalizes to Protocol-T for other
displacements D and Protocol-S in that segmentation of periodic lines results in
interactions and merger of coherent structures – and thus formation of adiabatic
structures – in ways qualitatively similar to that demonstrated in figures 12–15.
However, in quantitative sense, behaviour may generally exhibit substantial diversity,
consistent with the great variation in intra-surface dynamics as a function of
displacement D and radius rs , as illustrated for Protocol-T in figures 8 and 9,
respectively.

First instances of adiabatic behaviour for Protocol-S are given in figure 16 for
D =10 and Re = 0.005 by way of the Poincaré section of a single tracer released
in the proximity of an elliptic segment of the period-1 line. This exposes several
coherent structures, of which one is directly connected with the period-1 line, namely
the large period-1 tube and adiabatic outer shell highlighted in figures 16(b)–(d ).
The period-1 line exhibits segmentation into elliptic and hyperbolic sections and
period-1/period-4 resonances in a comparably intricate manner as found before for
Protocol-T. The merger of the outer end of the period-1 tube and the adiabatic
shell is, similar to the behaviour observed for Protocol-A’ at θ0 = π/6, D =5 and
Re = 0.1 (figure 11), triggered by RIM due to an isolated period-4 resonance. The
inner end of the period-1 tube undergoes bifurcation into a higher-order tube rather
than the typical merger with an inner adiabatic shell found in the previous cases. This
prevalence of tube bifurcations over tube-shell merger, reminiscent of the dynamics
in the inner regions of Protocol-T (figure 15), is believed to result directly from the
intricate intra-surface dynamics – reflected in the arrangements of elliptic islands – of
the underlying invariant surfaces (as e.g. demonstrated in figure 7b) and the inherent
complex segmentation of the period-1 line. The rz-projection in figure 16(d ), in
particular, offers first insight into the immense complexity of the adiabatic structures
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Figure 16. Formation of adiabatic structures in Protocol-S (D =10) for Re = 0.005 visualized
by the Poincaré section of a single tracer. (a) Perspective view, (b) close-up perspective view,
(c) top view and (d ) rz-projection. The highlighted adiabatic structure (magenta) comprises a
period-1 tube and outer shell merged by RIM. The period-1 line (curve) is shown by elliptic
(black) and hyperbolic (red) segments, with isolated period-1 (blue) and period-4 (cyan)
resonances as indicated.

formed by such bifurcations. Further investigation of these phenomena is the subject
of ongoing studies.

5.6. Outlook to laboratory experiments

To date the adiabatic behaviour (and then, in particular, RIM) inside the cylinder
flow has been investigated only through numerical simulations. This behaviour is
of great importance for three-dimensional mixing flows by, first, providing new
fundamental insight into the transport dynamics of three-dimensional unsteady
flows (consisting of piecewise steady flows) and, second, by potentially offering
ways for methodical manipulation of these transport properties for mixing purposes.
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Simulations Experiments

Protocol Re D U (cm s−1) Dw (cm) T (s)

T 0.01 14 5 28 16.8
S 0.005 10 2.5 20 32

Table 1. Design parameters for laboratory experiments on the closed forcing protocols.

Laboratory experiments on this adiabatic behaviour are imperative for bridging the
gap to (future) mixing applications. The closed forcing protocols (i.e. Protocols-T and
S) admit long-term experiments with finite walls and thus are to serve as model flows
to be investigated in future laboratory experiments. First aims are validation of key
features of both the non-inertial limit (invariant surfaces, periodic lines, intra-surface
dynamics) and the corresponding adiabatic state (formation of tubes and shells,
tube-shell connections). These prospective experiments expand on the exploratory
experiments on the non-inertial baseline flow in Speetjens et al. (2004) and are to
employ the following experimental techniques: laser-induced fluorescence (LIF) for
visualization of coherent structures based on the course of action by Fountain,
Khakhar & Ottino (1998) and Fountain et al. (2000) and three-dimensional particle-
tracking velocimetry (3DPTV) for measurement of three-dimensional Lagrangian
fluid trajectories and three-dimensional velocity fields employing the methodology by
Luethi, Tsinober & Kinzelbach (2005). LIF is, on grounds of its limited spatial
resolution relative to 3DPTV, to be employed for visualization of large(r)-scale
features; 3DPTV is to be employed primarily for detailed isolation of intra-surface
topologies and adiabatic structures and especially the delicate small-scale features
related to RIM. Hence, the 3DPTV experiments will be the most challenging and
therefore will serve as guidance for a first estimate of design and operating parameters.
This is elaborated below.

Relevant parameters are the wall velocity U , wall-displacement Dw and
the duration of one forcing period T that, through definitions Re = UR/ν

and D =Dw/R =UT/nR, relate to the non-dimensional system parameters via
U = Re ν/R, Dw = DR and T = nDw/U = nDR2/Re ν. Parameters Dw and T are
of particular importance in that both determine the scale of the laboratory set-up and
the duration of the measurements, respectively. Presuming, similar to the laboratory
set-up of Speetjens et al. (2004), a cylinder radius of the order of a few centimetres
and a high-viscosity silicon oil (offered by Wacker GmbH, Germany in the viscosity
range 10−6 − 1 m2 s−1), yields estimates for the experimental settings corresponding
with the closed protocols considered in the present study, according to table 1. These
estimates are based on R = 2 cm and ν = 0.1 m2 s−1 and the constraint U � 5 cm s−1

set by a maximally allowable wall acceleration during change of direction. (The
(de-)acceleration stages involved with switching between forcing steps become longer
with higher translation velocity due to the inertia of the wall, causing growing
departure from the piecewise steady wall translation. Test runs indicated that these
stages are negligible – and the piecewise steady nature of the flow upheld – for the
given velocity constraint.) Note that condition Tν/Tstep ∼ O(10−4) � 1 for ensuring
piecewise steady motion is well met (§ 2). RIM occurs for very small departures from
the Stokes limit, i.e. typically Re ∼ O(10−2), meaning that accurate control of Re

is critical for reliable performance of laboratory experiments. The variation in set
translation velocity is �U ∼ O(0.1 mm s−1), implying a sufficient absolute accuracy
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�Re = �UR/ν ∼ O(10−5) in the Reynolds number. Important to recall is that, on
account of the numerical method, physical Reynolds numbers are an estimated factor
two lower compared to those considered in the present study (§ 2.2). This can be
readily adjusted for via the fluid viscosity and thus is of no consequence to the above.

These estimates imply length and velocity scales that are easily realizable in a
laboratory set-up. However, given that visualization of (topological features within)
invariant surfaces and adiabatic structures with 3DPTV may require hundreds of
forcing periods, direct measurement of Poincaré sections involves continuous 3DPTV
measurements with durations of the order of hours and thus is a challenging
objective. An alternative to this direct Lagrangian approach may be found in a
hybrid numerical–experimental course of action similar to that pursued by Voth,
Haller & Gollub (2002) for two-dimensional chaotic flows. The latter evaluate long-
term Lagrangian quantities by numerical tracking of tracer motion employing a
two-dimensional velocity field obtained through high-resolution velocimetry. The
present configuration admits a similar approach based on accurate 3DPTV velocity
measurements of the steady base flow underlying the forcing protocols (§ 4) by the
methodology of Luethi et al. (2005). Resolution of this three-dimensional base flow
may be augmented further by combining data obtained for consecutive time steps
into one overall flow field. Design and realization of these laboratory experiments is
currently underway.

6. Conclusions
The present study concerns the role of fluid inertia (parameterized by the Reynolds

number Re) in the three-dimensional advection properties of passive tracers inside
a cylinder flow driven by time-periodic motion of one endwall. Tracer advection is
studied in a Lagrangian framework by examining the topological properties of the
coherent structures that form in the three-dimensional web of tracer paths. Such
coherent structures geometrically determine the transport properties of the flow.
Primary goal is further exploration of a recently disclosed fundamental transport
phenomenon: the merger of coherent structures formed in the non-inertial limit
(Re = 0) into intricate new structures embedded in chaotic regions by a mechanism
termed resonance-induced merger (RIM) triggered by weak fluid inertia (Re > 0).
Two key issues are addressed: (i) establishing the degree of universality of RIM
and (ii) paving the way to experimental investigation of RIM. To these ends RIM
has been examined in a number of cylinder flows. The following conclusions can be
reached.

RIM has been observed in all flow configurations examined. Key ingredients are
adiabatic shells and elliptic tubes emanating from weak inertial perturbation of the
spheroidal invariant surfaces and elliptic islands within these surfaces, respectively, of
the non-inertial limit. Merger of adiabatic shells and elliptic tubes by RIM, consistent
with previous studies, ensued from resonances located on the elliptic segments of the
periodic lines. This strongly suggests that RIM is indeed a universal phenomenon
and key to an essentially three-dimensional route to chaos.

Part of the resonances stems from parabolic points that separate elliptic and
hyperbolic segments on the periodic lines; this type has been encountered before. The
present study isolated two further types of resonance that cause RIM: (i) isolated
parabolic points inside elliptic segments of periodic lines and (ii) period-4 resonances
(i.e. occurring after four cycles instead of one) inside these segments. This strongly
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suggests that RIM may, in principle, originate from any period-p resonance, with
p � 1, located on any (higher-order) periodic line inside the system.

The occurrence of RIM itself is essentially equivalent in all flows considered.
However, its manifestation in tracer dynamics varies significantly with the particular
flow due to the great diversity in the underlying non-inertial states. The general
trend is that the topology and arrangement of adiabatic structures formed by RIM
grow more complex with increasing convolution and segmentation of periodic lines.
Thus, multiple families of adiabatic structures can be formed that together define
an intricate network of (intertwined) coherent structures embedded in chaotic seas.
Structures may spatially confine tracers, yet may also exchange material with chaotic
seas – and thus, indirectly with other structures. This brings about an enormous
richness of three-dimensional tracer dynamics.

The above findings substantiate the important hypothesis that RIM is a universal
phenomenon that occurs in any three-dimensional time-periodic flow accommodating
invariant surfaces topologically equivalent to spheroids and (higher-order) periodic
lines with segmentation into elliptic and hyperbolic sections. They furthermore provide
strong evidence that RIM is a key element in an essentially three-dimensional route
to global chaos in flows of this generic topological make-up. Further theoretical
and numerical investigations on RIM in particular – and inertia-induced transport
phenomena in general – by means of the cylinder flow are in progress. Investigations
of resonances underlying RIM may hinge on methods by Litvak-Hinenzon & Rom-
Kedar (2002) and Vainchtein et al. (2006). Topological analyses, in general, may
benefit greatly from the recent Lagrangian techniques by Branicki & Wiggins (2009)
developed specifically for three-dimensional unsteady systems.

The considered cylinder flows in part concern the so-called closed forcing protocols
(i.e. zero net wall displacement during one cycle) that admit unrestricted repetition
with a finite-size endwall. These configurations – and the simulated dynamics
presented here – serve as a blueprint for laboratory experiments on three-dimensional
transport phenomena. This is a major (future) research objective and realization of
such experiments is currently underway.

The non-inertial limits of the cylinder flows furthermore closely relate to other
systems considered in literature: volume-preserving systems with invariant surfaces
in general (Mezić & Wiggins 1994; Gómez & Meiss 2002; Mullowney et al. 2008)
and tumbled granular flows in particular (Meier et al. 2007; Sturman et al. 2008).
Hence, present and future insight gained into the dynamics of the (perturbed) cylinder
flows – and its reconciliation with the said systems – is potentially relevant to further
development of a generic theoretical framework for three-dimensional unsteady
transport as well as its application to realistic transport problems. Future research is
planned to further explore these issues.

Z. Pouransari gratefully acknowledges financial support from the Dutch Foundation
for Fundamental Research on Matter (FOM).
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